Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310301, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298130

RESUMO

Female sterilization via fallopian tube ligation is a common procedure; However, after the operation, over 10% of women seek re-fertilization, which is frequently unsuccessful. In addition, there is evidence that fallopian tubes contribute to the spread of endometriotic tissue as they serve as channels for proinflammatory media entering the abdominal cavity via retrograde menstruation. Here, stimuli-degradable hydrogel implants are presented for the functional, biocompatible, and reversible occlusion of fallopian tubes. The hydrogel implants, designed with customized swelling properties, mechanically occlude fallopian tubes in a high-performance manner with burst pressures reaching 255-558 mmHg, exceeding normal abdominal pressures (95 mmHg). Their damage-free removal can be achieved within 30 min using near-visible UV light or a glutathione solution, employing a method akin to standard fallopian tube perfusion diagnostics. Ultrasound-guided implant placement is demonstrated using a clinical hysteroscope in a human-scale uterus model and biocompatibility in a porcine in vivo model. Importantly, the prevention of live sperm as well as endometrial cell passage through blocked fallopian tubes is demonstrated. Overall, a multifunctional system is presented that constitutes a possible means of on-demand, reversible contraception along with the first-ever mechanical approach to abdominal endometriosis prevention and treatment.

2.
Soft Matter ; 20(8): 1736-1745, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38288734

RESUMO

Hydrogel microparticles ranging from 0.1-100 µm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 µm and 82 ± 25 µm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.


Assuntos
Hidrogéis , Microgéis , Animais , Cavalos , Hidrogéis/química , Lipossomos , Microfluídica , Reologia
3.
Adv Mater Technol ; 8(6)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37600966

RESUMO

Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.

4.
Pharmaceutics ; 14(5)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35631649

RESUMO

Protein therapeutics have become increasingly popular for the treatment of a variety of diseases owing to their specificity to targets of interest. However, challenges associated with them have limited their use for a range of ailments, including the limited options available for local controlled delivery. To address this challenge, degradable hydrogel microparticles, or microgels, loaded with model biocargoes were created with tunable release profiles or triggered burst release using chemistries responsive to endogenous or exogeneous stimuli, respectively. Specifically, microfluidic flow-focusing was utilized to form homogenous microgels with different spontaneous click chemistries that afforded degradation either in response to redox environments for sustained cargo release or light for on-demand cargo release. The resulting microgels were an appropriate size to remain localized within tissues upon injection and were easily passed through a needle relevant for injection, providing means for localized delivery. Release of a model biopolymer was observed over the course of several weeks for redox-responsive formulations or triggered for immediate release from the light-responsive formulation. Overall, we demonstrate the ability of microgels to be formulated with different materials chemistries to achieve various therapeutic release modalities, providing new tools for creation of more complex protein release profiles to improve therapeutic regimens.

5.
Chem Commun (Camb) ; 56(76): 11263-11266, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32820777

RESUMO

Synthetic DNA analogues are of great interest for their application in information storage, therapeutics, and nanostructured materials, yet are often limited in scalability. Vinyl sulfonamide click nucleic acids (VS-CNAs) have been developed to overcome this limitation using the highly efficient thiol-Michael 'click' reaction. Utilizing all four nucleobases, sequence-defined click nucleic acids (CNAs) were synthesized using a simple and scalabale solution-phase approach. Employing a polyethylene glycol (PEG) support, synthesis of the CNA sequence, GATTACA, was achieved in high yields. CNA crosslinked hydrogels were assembled using multiarm PEG-CNAs resulting in materials that dynamically respond to temperature, strain, and competitive sequences.


Assuntos
DNA/química , Hidrogéis/química , Sulfonamidas/química , DNA/síntese química , Hidrogéis/síntese química , Teste de Materiais , Polietilenoglicóis/química , Temperatura
6.
J Am Chem Soc ; 142(10): 4671-4679, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32037819

RESUMO

Photolabile moieties have been utilized in applications ranging from peptide synthesis and controlled protein activation to tunable and dynamic materials. The photochromic properties of nitrobenzyl (NB) based linkers are readily tuned to respond to cytocompatible light doses and are widely utilized in cell culture and other biological applications. While widely utilized, little is known about how the microenvironment, particularly confined aqueous environments (e.g., hydrogels), affects both the mode and rate of cleavage of NB moieties, leading to unpredictable limitations in control over system properties (e.g., rapid hydrolysis or slow photolysis). To address these challenges, we synthesized and characterized the photolysis and hydrolysis of NB moieties containing different labile bonds (i.e., ester, amide, carbonate, or carbamate) that served as labile crosslinks within step-growth hydrogels. We observed that NB ester bond exhibited significant rates of both photolysis and hydrolysis, whereas, importantly, the NB carbamate bond had superior light responsiveness and resistance to hydrolysis within the hydrogel microenvironment. Exploiting this synergy and orthogonality of photolytic and hydrolytic degradation, we designed concentric cylinder hydrogels loaded with different cargoes (e.g., model protein with different fluorophores) for either combinatorial or sequential release, respectively. Overall, this work provides new facile chemical approaches for tuning the degradability of NB linkers and an innovative strategy for the construction of multimodal degradable hydrogels, which can be utilized to guide the design of not only tunable materials platforms but also controlled synthetic protocols or surface modification strategies.


Assuntos
Hidrogéis/química , Nitrobenzenos/química , Soroalbumina Bovina/química , Animais , Carbamatos/síntese química , Carbamatos/química , Carbamatos/efeitos da radiação , Bovinos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Hidrogéis/efeitos da radiação , Hidrólise/efeitos da radiação , Nitrobenzenos/síntese química , Nitrobenzenos/efeitos da radiação , Fotólise , Estudo de Prova de Conceito , Raios Ultravioleta
7.
ACS Appl Bio Mater ; 3(10): 6944-6958, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34327309

RESUMO

There has been an increased interest in the use of protein therapeutics, especially antibodies, for the treatment of a variety of diseases due to their high specificity to tissues and biological pathways of interest. However, the use of antibodies can be hindered by physical aggregation, degradation, and diffusion when injected in vivo leading to the need for antibody-releasing depots for the controlled and localized delivery within tissues of interest. Here, we investigated photolabile hydrogel chemistries for creating on-demand and tunable antibody release profiles. Innovative, scalable synthetic procedures were established and applied for fabricating hydrogels with nitrobenzyl (NB) and coumarin (CMR) photolabile crosslinks that responded to clinically relevant doses of long-wavelength UV and short-wavelength visible light. This synthetic procedure includes a route to make a CMR linker possessing two functional handles at the same ring position with water-stable bonds. The photocleavage properties of NB and CMR crosslinked hydrogels were characterized, as well as their potential for translational studies by degradation through pig skin, a good human skin mimic. The mechanism of hydrogel degradation, bulk versus surface eroding, was determined to be dependent on the wavelength of light utilized and the molar absorptivity of the different photolabile linkers, providing a facile means for altering protein release upon hydrogel degradation. Further, the encapsulation and on-demand release of a model monoclonal antibody was demonstrated, highlighting the ability to control antibody release from these hydrogels through the application of light while retaining its bioactivity. In particular, the newly designed CMR hydrogels undergo surface erosion-based protein release using visible light, which is more commonly used clinically. Overall, this work establishes scalable syntheses and relevant pairings of formulation-irradiation conditions for designing on-demand and light-responsive material systems that provide controlled, tunable release of bioactive proteins toward addressing barriers to preclinical translation of light-based materials and ultimately improving therapeutic regimens.

8.
Colloids Surf B Biointerfaces ; 174: 483-492, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497010

RESUMO

Circulating tumor cells (CTCs) play a central role in cancer metastasis and represent a rich source of data for cancer prognostics and therapeutic guidance. Reliable CTC recovery from whole blood therefore promises a less invasive and more sensitive approach to cancer diagnosis and progression tracking. CTCs, however, are exceedingly rare in whole blood, making their quantitative recovery challenging. Several techniques capable of isolating these rare cells have been introduced and validated, yet most suffer from low CTC purity or viability, both of which are essential to develop a clinically viable CTC isolation platform. To address these limitations, we introduce a patterned, immunofunctional, photodegradable poly(ethylene glycol) (PEG) hydrogel capture surface for the isolation and selective release of rare cell populations. Flat and herringbone capture surfaces were successfully patterned via PDMS micromolding and photopolymerization of photolabile PEG hydrogels. Patterned herringbone surfaces, designed to convectively transport cells to the capture surface, exhibited improved capture density relative to flat surfaces for target cell capture from buffer, buffy coat, and whole blood. Uniquely, captured cells were released for collection by degrading the hydrogel capture surface with either bulk or targeted irradiation with cytocompatible doses of long wavelength UV light. Recovered cells remained viable following capture and release and exhibited similar growth rates as untreated control cells. The implementation of molded photodegradable PEG hydrogels as a CTC capture surface provides a micropatternable, cytocompatible platform that imparts the unique ability to recover pure, viable CTC samples by selectively releasing target cells.


Assuntos
Anticorpos Imobilizados/química , Antígenos de Neoplasias/imunologia , Separação Celular/métodos , Hidrogéis/química , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Polietilenoglicóis/química , Anticorpos Imobilizados/imunologia , Materiais Biocompatíveis/química , Separação Celular/instrumentação , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/imunologia , Fotólise , Células Tumorais Cultivadas
9.
ACS Macro Lett ; 8(1): 7-16, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32405440

RESUMO

As knowledge about the dynamic nature of tissues within the human body has increased, the need for cell culture models that mimic the properties of these dynamic microenvironments has grown. Hydrogels are useful platforms for investigating cellular responses to microenvironment cues in disease and regeneration processes and recently have been designed to contain dynamic bonds to regulate the mechanical and biochemical properties of the matrix in three-dimensional cell culture applications. In this Viewpoint, we highlight recent advances in developing hydrogels with dynamic properties for modeling aspects of human tissues, providing control over the properties of the synthetic matrix on multiple length and time scales, and their application for understanding or directing cell response. We conclude by discussing how orthogonal chemistries can be utilized to design dynamic hydrogel platforms for controlling both the mechanical and biochemical environment, affording opportunities to investigate more complex questions associated with disease progression and tissue regeneration.

10.
Bioconjug Chem ; 29(11): 3595-3605, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30285419

RESUMO

The retro Michael-type addition and thiol exchange of thioether succinimide click linkages in response to thiol-containing environments offers a novel strategy for the design of glutathione-sensitive degradable hydrogels for controlled drug delivery. Here we characterize the kinetics and extent of the retro Michael-type addition and thiol exchange with changes in both the p Ka of the thiols and the identity of N-substituents of maleimides. A series of N-substituted thioether succinimides were prepared through typical Michael-type addition. Model studies (1H NMR, HPLC) of 4-mercaptophenylacetic acid (MPA, p Ka 6.6) conjugated to N-ethyl maleimide (NEM), N-phenyl maleimide (NPM), or N-aminoethyl maleimide (NAEM) and then incubated with glutathione showed half-lives of conversion from 3.1 to 18 h, with extents of conversion from approximately 12% to 90%. The variations in the rates of exchange and hydrolytic ring opening appear to be mediated by resonance effects, electron-withdrawing capacity of the N-substituted moiety, as well as the potential for intramolecular catalytic hydrogen bonding of amine substituents with water (particularly in the case of ring opening). Further model studies of 4-mercaptohydrocinnamic acid (MPP, p Ka 7.0) and N-acetyl-l-cysteine (NAC, p Ka 9.5) conjugated to selected N-substituted maleimides and then incubated with glutathione showed half-lives of conversion from 3.6 to 258 h, with extents of conversion from approximately 1% to 90%. A higher p Ka of the thiol decreased the rate of the exchange reaction and limited the impact of other electronic effects of N-substituents on the extents of conversion. Additional factors affecting the conversion kinetics were studied on NEM conjugates. The kinetics of the retro Michael-type addition and exchange reaction were not hindered by thiol traps of lower p Ka, but were retarded in conditions of lower pH. These studies shed light into details of thiol and maleimide design that could be used to tune the rates of degradation of drug and polymer conjugates for a variety of applications.


Assuntos
Glutationa/química , Maleimidas/química , Compostos de Sulfidrila/química , Cromatografia Líquida de Alta Pressão , Meia-Vida , Hidrólise , Cinética , Espectroscopia de Prótons por Ressonância Magnética
11.
Chem Commun (Camb) ; 54(50): 6923-6926, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29863200

RESUMO

An approach for the design of functionalized cyclic peptides is established for use in 3D cell culture and in cell targeting. Sequential orthogonal click reactions, specifically a photoinitiated thiol-ene and strain promoted azide-alkyne cycloaddition, were utilized for peptide cyclization and conjugation relevant for biomaterial and biomedical applications, respectively.

12.
ACS Macro Lett ; 7(9): 1105-1110, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832198

RESUMO

Synthetic hydrogels have been widely adopted as well-defined matrices for three-dimensional (3D) cell culture, with increasing interest in systems that enable the co-culture of multiple cell types for probing both cell-matrix and cell-cell interactions in studies of tissue regeneration and disease. We hypothesized that the unique dynamic covalent chemistry of self-healing hydrogels could be harnessed for not only the encapsulation and culture of human cells but also the subsequent construction of layered hydrogels for 3D co-cultures. To test this, we formed hydrogels using boronic acid-functionalized polymers and demonstrated their self-healing in the presence of physiologically-relevant cell culture media. Two model human cell lines, MDA-MB-231 breast cancer cells and CCL151 pulmonary fibroblasts, were encapsulated within these dynamic materials, and good viability was observed over time. Finally, self-healing of cut hydrogel 'blocks' laden with these different cell types was used to create layered hydrogels for the generation of a dynamic co-culture system. This work demonstrates the utility of self-healing materials for multi-dimensional cultures and establishes approaches broadly useful for a variety of biological applications.

13.
ACS Biomater Sci Eng ; 4(8): 3078-3087, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31984222

RESUMO

The in situ fabrication of poly(ethylene glycol) diacrylate (PEGDA) hydrogel microstructures within poly(dimethylsiloxane) (PDMS)-based microfluidic networks is a versatile technique that has enabled unique applications in biosensing, medical diagnostics, and the fundamental life sciences. Hydrogel structures have previously been patterned by the lithographic photopolymerization of PEGDA hydrogel forming solutions, a process that is confounded by oxygen-permeable PDMS. Here, we introduce an alternate PEG patterning technique that relies upon the optical sculpting of features by patterned light-induced erosion of photodegradable PEGDA deemed negative projection lithography. We quantitatively compared the hydrogel micropatterning fidelity of negative projection lithography to positive projection lithography, using traditional PEGDA photopolymerization, within PDMS devices. We found that the channel depth, the local oxygen atmosphere, and the UV exposure time dictated the size and resolution of hydrogel features formed using positive projection lithography. In contrast, negative projection lithography was observed to deliver high-resolution functional features with dimensions on the order of single micrometers enabled by its facilely controlled mechanism of feature formation that is insensitive to oxygen. Next, the utility of photodegradable PEGDA was further assessed by encapsulating or conjugating bioactive molecules within photodegradable PEG matrixes to provide a route to the formation of complex and dynamically reconfigurable chemical microenvironments. Finally, we demonstrated that negative projection lithography enabled photopatterning of multilayered microscale objects without the need for precise mask alignment. The described approach for photopatterning high-resolution photolabile hydrogel microstructures directly within PDMS microchannels could enable novel microsystems of increasing complexity and sophistication for a variety of clinical and biological applications.

14.
Adv Healthc Mater ; 6(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024487

RESUMO

Injectable delivery systems that respond to biologically relevant stimuli present an attractive strategy for tailorable drug release. Here, the design and synthesis of unique polymers are reported for the creation of hydrogels that are formed in situ and degrade in response to clinically relevant endogenous and exogenous stimuli, specifically reducing microenvironments and externally applied light. Hydrogels are formed with polyethylene glycol and heparin-based polymers using a Michael-type addition reaction. The resulting hydrogels are investigated for the local controlled release of low molecular weight proteins (e.g., growth factors and cytokines), which are of interest for regulating various cellular functions and fates in vivo yet remain difficult to deliver. Incorporation of reduction-sensitive linkages and light-degradable linkages affords significant changes in the release profiles of fibroblast growth factor-2 (FGF-2) in the presence of the reducing agent glutathione or light, respectively. The bioactivity of the released FGF-2 is comparable to pristine FGF-2, indicating the ability of these hydrogels to retain the bioactivity of cargo molecules during encapsulation and release. Further, in vivo studies demonstrate degradation-mediated release of FGF-2. Overall, our studies demonstrate the potential of these unique stimuli-responsive chemistries for controlling the local release of low molecular weight proteins in response to clinically relevant stimuli.


Assuntos
Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Proteínas/farmacologia , Túnica Adventícia/citologia , Túnica Adventícia/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Glutationa/farmacologia , Heparina/química , Humanos , Hidrogéis/química , Masculino , Maleimidas/farmacologia , Pessoa de Meia-Idade , Peso Molecular , Polietilenoglicóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...